Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Amino-1-methyl-4-oxo-4,5-dihydro1 H -imidazol-3-ium chloride

Masoumeh Tabatabaee, ${ }^{\text {a* }}$ Mahboubeh A. Sharif, ${ }^{\text {b }}$ Michal Dušek ${ }^{\text {c }}$ and Michaela Pojarovác

${ }^{\text {a }}$ Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran,
${ }^{\mathbf{b}}$ Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Iran, and ${ }^{\text {c }}$ Institute of Physics ASCR, v.v.i., Na Slovance 2, 18221 Praha 8, Czech Republic Correspondence e-mail: tabatabaee45m@yahoo.com

Received 4 June 2012; accepted 14 June 2012
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.026 ; w R$ factor $=0.074$; data-to-parameter ratio $=14.1$.

In the crystal structure of the title compound, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}^{+} \cdot \mathrm{Cl}^{-}$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds link the components into chains along [010]. In addition, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds link the chains into a two-dimensional network perpendicular to (001).

Related literature

For creatinine (2-amino-1-methyl-5H-imidazol-4-one), which is used in the synthesis of some 1:1 proton-transfer compounds, see; Moghimi et al. (2004); Soleimannejad et al. (2005). For related structures, see: Tabatabaee et al. (2007); Bujak \& Zaleski (2002); Tabatabaee, Abbasi et al. (2011); Tabatabaee, Tahriri et al. $(2011,2012)$; Tabatabaee, Adineh et al. (2012). For background information on weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, see: Freytag \& Jones (2000); Taylor \& Kennard (1982).

Experimental

Crystal data
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=149.58$
Monoclinic, $P 2_{1} / n$
$a=8.4617$ (2) A
$b=7.7073$ (2) A
$c=10.2215(3) \AA$
$\beta=98.369$ (2) ${ }^{\circ}$
$V=659.52(3) \AA^{3}$
$Z=4$
$\mathrm{Cu} K \alpha$ radiation

$$
\begin{aligned}
\mu & =4.51 \mathrm{~mm}^{-1} \\
T & =120 \mathrm{~K}
\end{aligned}
$$

Data collection
Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)
$T_{\text {min }}=0.509, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.074$
$S=1.08$
1167 reflections
$0.57 \times 0.35 \times 0.15 \mathrm{~mm}$

5373 measured reflections 1167 independent reflections 1158 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.023$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.86	2.42	3.2714 (12)	169
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{Cl} 1^{\text {ii }}$	0.86	2.32	3.1506 (12)	163
N2-H3 \cdots Cl1	0.89	2.31	3.1808 (11)	165
$\mathrm{C} 2-\mathrm{H} 4 \cdots \mathrm{Cl} 1^{\text {iii }}$	0.97	2.69	3.6271 (14)	162
$\mathrm{C} 4-\mathrm{H} 8 \cdots \mathrm{Cl} 1^{\text {i }}$	0.96	2.77	3.7241 (13)	175
Symmetry coc $-x+1,-y+1,$	(i)	$\begin{equation*} x, y-1, z \tag{ii} \end{equation*}$	$\begin{equation*} -x+2,-y+1,-z+1 \tag{iii} \end{equation*}$	

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

This research was supported by the Islamic Azad University, Yazd Branch (grant No. 50678) and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5487).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bujak, M. \& Zaleski, J. (2002). Z. Naturforsch. Teil B, 57, 157-164.
Freytag, M. \& Jones, P. G. (2000). Chem. Commun. pp. 277-278.
Moghimi, A., Sharif, M. A. \& Aghabozorg, H. (2004). Acta Cryst. E60, o1790o1792.
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Oxford Diffraction Ltd. (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Soleimannejad, J., Sharif, M. A., Sheshmani, S., Alizadeh, R., Moghimi, A. \& Aghabozorg, H. (2005). Anal. Sci. 21, x49-x50.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Tabatabaee, M., Abbasi, F., Kukovec, B.-M. \& Nasirizadeh, N. (2011). J. Coord. Chem. 64, 1718-1728.
Tabatabaee, M., Adineh, M., Derikvand, Z. \& Attar Gharamaleki, J. (2012). Acta Cryst. E68, m462-m463.
Tabatabaee, M., Ghassemzadeh, M., Jafari, P. \& Khavasi, H. R. (2007). Acta Cryst. E63, o1001-o1002.

organic compounds

Tabatabaee, M., Tahriri, M., Tahriri, M., Dušek, M. \& Fejfarová, K. (2011). Acta Cryst. E67, m769-m770
Tabatabaee, M., Tahriri, M., Tahriri, M., Ozawa, Y., Neumüller, B., Fujioka, H. \& Toriumi, K. (2012). Polyhedron, 33, 336-340.

Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, o2183-o2184 [doi:10.1107/S1600536812027080]

2-Amino-1-methyl-4-oxo-4,5-dihydro-1 H -imidazol-3-ium chloride

Masoumeh Tabatabaee, Mahboubeh A. Sharif, Michal Dušek and Michaela Pojarová

Comment

In continuation of our research to synthesize transition metal complexes with dicarboxylic acids (especially pyridine-2,6dicarboxilic acid) in the presence of some amino compounds (Tabatabaee, Abbasi et al., 2011; Tabatabaee, Tahriri et al., 2011; Tabatabaee, Tahriri et al., 2012; Tabatabaee, Adineh et al., 2012), the reaction of zirconium tetrachloride, with pyridine-2,6-dicarboxilic acid in the presence of creatinine was performed. The title compound (I) was fortuitously obtained as a result of this reaction. Creatinine has previously been used as a proton acceptor in the synthesis of some $1: 1$ proton-transfer compounds (Moghimi et al., 2004; Soleimannejad et al., 2005).

The molecular structure of (I) is shown in Fig. 1. During the reaction a proton was transferred to the ring N atom of the creatinine (2-Amino-1-methyl-5H-imidazol-4-one) molecule. In (I) the C3-N1 bond [1.3094 (18) \AA] and C3-N2 bond [1.3647 (17) \AA] can be compared to the $\mathrm{C}=\mathrm{N}$ bond $[1.3108$ (18) \AA] and $\mathrm{C}-\mathrm{N}$ bond [1.3612 (17) \AA] in the reported proton transfer compound, bis(creatininium)2,5-dicarboxybenzene-1,4-dicarboxylate (Tabatabaee et al., 2007).

In the crystal, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds link the components into one-dimensional chains along [010]. In addition, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds link one-dimensional-chains into a two-dimensional network perpendicular to (001) (Fig. 2). When compared with the crystal structure of 1,2,4-triazolium chloride (Bujak \& Zaleski 2002), the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions are weaker in the present structure while $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions are similar. For the weak intermolecular hydrogen bonds the $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ angles are in the range of those previously reported (Freytag \& Jones, 2000; Taylor \& Kennard, 1982).

Experimental

An aqueous solution of $\mathrm{ZrCl}_{4},(0.233 \mathrm{~g}, 1 \mathrm{mmol})$ in water $(10 \mathrm{ml})$ was added to a stirring solution of $(20 \mathrm{ml})$ pyridine-2,6dicarboxylic acid $(0.167 \mathrm{~g}, 1 \mathrm{mmol})$ and creatinine $(0.113 \mathrm{~g}, 1 \mathrm{mmol})$. The reaction mixture was stirred at 298 K for 4 h . The resulting solid residue was filtered and the colorless crystals of the title compound were obtained after few days at 277 K from mother liquor.

Refinement

H atoms bonded to C atoms were included in calculated positions with $\mathrm{C}-\mathrm{H}=0.96$ and $0.97 \AA$ and with $\mathrm{U}_{\text {iso }}(\mathrm{H})=$ $1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C}) . \mathrm{H}$ atoms bonded to N atom were included with $\mathrm{N}-\mathrm{H} 0.86$ amd $0.89 \AA$ and with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.5 \mathrm{U}_{\text {eq }}(\mathrm{N})$.

Computing details

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

supplementary materials

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability.

Figure 2
Part of the crystal structure with $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds shown as black dashed lines and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds shown as grey dashed lines.

2-Amino-1-methyl-4-oxo-4,5-dihydro-1 H -imidazol-3-ium chloride

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}^{+} \cdot \mathrm{Cl}^{-}$

$M_{r}=149.58$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=8.4617$ (2) Å
$b=7.7073$ (2) \AA
$c=10.2215(3) \AA$
$\beta=98.369$ (2) ${ }^{\circ}$
$V=659.52(3) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=312 \\
& D_{\mathrm{x}}=1.507 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation, } \lambda=1.54178 \AA \\
& \text { Cell parameters from } 5086 \text { reflections } \\
& \theta=4.4-66.9^{\circ} \\
& \mu=4.51 \mathrm{~mm}^{-1} \\
& T=120 \mathrm{~K} \\
& \text { Plate, colourless } \\
& 0.57 \times 0.35 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer
Radiation source: Enhance Ultra (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.3784 pixels mm^{-1}
Rotation method data acquisition using ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)

$$
\begin{aligned}
& T_{\min }=0.509, T_{\max }=1.000 \\
& 5373 \text { measured reflections } \\
& 1167 \text { independent reflections } \\
& 1158 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.023 \\
& \theta_{\max }=67.0^{\circ}, \theta_{\min }=6.4^{\circ} \\
& h=-10 \rightarrow 9 \\
& k=-9 \rightarrow 9 \\
& l=-12 \rightarrow 11
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.074$
$S=1.08$
1167 reflections
83 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger. The H atoms were all located in a difference map, but those attached to carbon atoms and the nitrogen atom in amino group were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry ($\mathrm{C}-\mathrm{H}$ in the range $0.93-0.98, \mathrm{~N}-\mathrm{H}$ in the range $0.86-0.89 \mathrm{~N}-\mathrm{H}$ to $0.86 \mathrm{O}-\mathrm{H}=0.82 \AA$) and $U_{\text {iso }}(\mathrm{H})$ (in the range 1.2 times $U_{\text {eq }}$ of the parent atom). The distance between hydrogen atom H 3 and N 2 was left unrestrained.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
C11	$0.86814(3)$	$0.71590(4)$	$0.45236(3)$	$0.02046(16)$
O1	$0.43618(13)$	$0.57647(13)$	$0.32081(12)$	$0.0358(3)$
N1	$0.79940(13)$	$0.13245(15)$	$0.41934(11)$	$0.0238(3)$
H1	0.8035	0.0210	0.4217	0.029^{*}
H2	0.8847	0.1923	0.4421	0.029^{*}
N2	$0.64629(13)$	$0.38708(14)$	$0.37714(11)$	$0.0217(3)$
H3	0.7227	0.4646	0.4031	0.026^{*}
C1	$0.48933(16)$	$0.43236(18)$	$0.33205(13)$	$0.0234(3)$
C2	$0.40103(16)$	$0.26312(17)$	$0.30246(14)$	$0.0211(3)$
H4	0.3128	0.2525	0.3529	0.025^{*}
H5	0.3606	0.2526	0.2090	0.025^{*}
N3	$0.52395(13)$	$0.13463(14)$	$0.34360(11)$	$0.0189(3)$

supplementary materials

C3	$0.66330(16)$	$0.21100(17)$	$0.38107(13)$	$0.0184(3)$
C4	$0.49578(15)$	$-0.04876(17)$	$0.31667(13)$	$0.0222(3)$
H6	0.4772	-0.0674	0.2228	0.027^{*}
H7	0.4040	-0.0858	0.3545	0.027^{*}
H8	0.5876	-0.1142	0.3549	0.027^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0170(2)$	$0.0197(2)$	$0.0238(2)$	$-0.00117(10)$	$0.00001(14)$	$-0.00029(10)$
O1	$0.0308(6)$	$0.0202(6)$	$0.0562(7)$	$0.0037(4)$	$0.0058(5)$	$0.0023(5)$
N1	$0.0176(6)$	$0.0207(6)$	$0.0312(6)$	$-0.0022(4)$	$-0.0029(5)$	$-0.0001(5)$
N2	$0.0203(6)$	$0.0182(6)$	$0.0262(6)$	$-0.0030(4)$	$0.0019(5)$	$-0.0020(4)$
C1	$0.0225(7)$	$0.0205(7)$	$0.0279(7)$	$0.0009(5)$	$0.0055(5)$	$0.0006(5)$
C2	$0.0162(7)$	$0.0191(6)$	$0.0276(7)$	$0.0028(5)$	$0.0021(5)$	$0.0011(6)$
N3	$0.0166(5)$	$0.0163(6)$	$0.0233(6)$	$-0.0002(4)$	$0.0007(4)$	$0.0001(4)$
C3	$0.0203(7)$	$0.0188(7)$	$0.0163(6)$	$-0.0019(5)$	$0.0032(5)$	$-0.0007(4)$
C4	$0.0195(7)$	$0.0175(6)$	$0.0285(7)$	$-0.0017(5)$	$0.0002(5)$	$-0.0008(5)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

O1-C1	1.1976 (18)	C2-N3	1.4533 (16)
N1-C3	1.3094 (18)	C 2 - H 4	0.9700
N1-H1	0.8600	C2-H5	0.9700
N1-H2	0.8600	N3-C3	1.3237 (18)
N2-C3	1.3647 (17)	N3-C4	1.4530 (17)
N2-C1	1.3856 (17)	C4-H6	0.9600
N2-H3	0.8921	C4-H7	0.9600
C1-C2	1.5118 (19)	C4-H8	0.9600
C3-N1-H1	120.0	H4-C2-H5	109.2
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 2$	120.0	C3-N3-C4	127.01 (11)
$\mathrm{H} 1-\mathrm{N} 1-\mathrm{H} 2$	120.0	C3-N3-C2	110.53 (11)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1$	110.62 (11)	$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 2$	121.15 (10)
C3-N2-H3	126.1	N1-C3-N3	126.05 (12)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 3$	123.3	N1-C3-N2	123.57 (12)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2$	126.44 (13)	N3-C3-N2	110.36 (11)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	127.82 (12)	N3-C4-H6	109.5
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	105.73 (11)	N3-C4-H7	109.5
N3-C2-C1	102.59 (11)	H6-C4-H7	109.5
N3-C2-H4	111.2	N3-C4-H8	109.5
C1-C2-H4	111.2	H6-C4-H8	109.5
N3-C2-H5	111.2	H7-C4-H8	109.5
C1-C2-H5	111.2		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl1} 1^{\mathrm{i}}$	0.86	2.42	$3.2714(12)$	169
$\mathrm{~N} 1 — \mathrm{H} 2 \cdots \mathrm{Cl1}^{\mathrm{ii}}$	0.86	2.32	$3.1506(12)$	163

supplementary materials

$\mathrm{N} 2 — \mathrm{H} 3 \cdots \mathrm{Cl1}$	0.89	2.31	$3.1808(11)$	165
$\mathrm{C} 2 — \mathrm{H} 4 \cdots \mathrm{Cl1}^{\mathrm{iii}}$	0.97	2.69	$3.6271(14)$	162
$\mathrm{C} 4 — \mathrm{H} 8 \cdots \mathrm{Cl1}^{\mathrm{i}}$	0.96	2.77	$3.7241(13)$	175

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+2,-y+1,-z+1$; (iii) $-x+1,-y+1,-z+1$.

